

SOP_002_NU_0_1_Preparing_Human_WCL_for_Qualitative_TDMS_2015_v1_CJD Caroline J. DeHart

Reagent and Materials List

Item	Part Number	Vendor
Tris Base	BP152-1	Fisher Scientific
Sodium Chloride	S9888	Sigma Aldrich
N-lauroylsarcosine	L9150-50G	Sigma Aldrich
1x HALT Protease and Phosphatase Inhibitor Cocktail (EDTA-free)	78443	Thermo Scientific
Magnesium Chloride	M8266	Sigma Aldrich
Benzonase Nuclease	E1014-25KU	Sigma Aldrich
Microplate BCA Assay (requires plate reader)	23252	Thermo Scientific
96-well plates	80086-578	VWR
ACS Grade Acetone	A18-4	Fisher Scientific
Sodium Dodecyl Sulfate	L3771-1KG	Sigma Aldrich
Dithiothreitol (DTT)	43815	Sigma Aldrich
10 % GELFrEE cartridge kit	42105	Expedeon
GELFrEE 8100	48100	Expedeon
1.5 mL Protein LoBind Microcentrifuge Tubes	13-698-794	Fisher Scientific
SDS-PAGE Running Buffer	1610732	BioRad
Precast gels (AnyKD, 15-well)	4569036	BioRad
2x Gel Sample Loading Buffer	1610737	BioRad
β-mercaptoethanol	M3148-100ML	Sigma Aldrich
Protein MW standard	1610374	BioRad
Silver Staining Kit	24612	Thermo Scientific
Optima Grade Methanol	A456-4	Fisher Scientific
HPLC Grade Chloroform	528730	Sigma Aldrich
Optima Grade Water	W6	Fisher Scientific
Optima Grade Acetonitrile	A955	Fisher Scientific
MS-Grade Formic Acid	PI-28905	Fisher Scientific

Important Notes

- This protocol is designed to be performed with dry, frozen pellets; each containing 2 x 10⁷ harvested human cells.
 Pellets should be stored at -80 °C and thawed on ice for 15 minutes prior to resuspension in lysis buffer. Human whole-cell lysate (WCL) should be kept as cold as possible until the acetone precipitation step.
- Use 1.5 mL Eppendorf LoBind microcentrifuge tubes for collecting GELFrEE fractions and performing MeOH/ CHCl₃/ H₂O sample cleanup. In our experience, these tubes have shown the lowest degree of plasticizer leaching and/or protein binding during use and storage.
- GELFrEE fractions can be stored at -80 °C for several weeks prior to the MeOH/CHCl₃/H₂O cleanup step. Once this cleanup has been performed, however, proteins will no longer be stable for long-term storage.

Lysis Buffer Recipe

Component	Volume (mL)	Stock Concentration	Final Concentration
Tris Base, pH 7.5	0.2	1 M	20 mM
NaCl	0.2	5 M	100 mM
N-lauroylsarcosine	1	10% (w/v)	1% (w/v)
HALT Inhibitor Cocktail	0.1	100X	1X
H₂O	8.5	-	-
Total	10		

Cell Lysis Protocol

- Resuspend each thawed cell pellet (2 x 10⁷ cells) in 1 mL of pre-chilled **lysis buffer**.
- Pipet to mix until a marked increase in sample viscosity (due to released genomic DNA) is observed.
- Incubate lysate on ice for 20 min. Pipet or invert to mix every 5 min.
- Add 1 μL of **1 M MgCl**₂ to the lysate (to a final concentration of 1 mM).
- + Add 3 μL (750 U) of benzonase nuclease to the lysate. Pipet to ensure complete mixing.
- Incubate lysate at 37 °C for 20 min. Pipet or invert to mix every 5 min.
- Chill lysates on ice for 5 min.
- Pellet remaining debris by centrifugation at 13.2 krpm for 15 min. at 4°C.

Protein Quantitation and Precipitation

- Determine total protein concentration for each lysate by performing the **BCA Assay** according to the manufacturer's protocol. Prepare all BSA standards in lysis buffer.
- Transfer the volume of lysate containing **400** µg of total protein to an Eppendorf LoBind tube.
- Add 6 volumes of ice-cold ACS-grade acetone to each tube (e.g. 600 μL to 100 μL).
- Precipitate proteins **overnight** at **-80 °C**.
- Pellet precipitated proteins by centrifugation at 13.2 krpm for 10 min. at 4°C.
- Remove supernatant. Wash protein pellets by adding an additional 6 volumes of ice-cold ACS-grade acetone.
- Pellet precipitated proteins by centrifugation at 13.2 krpm for 10 min. at 4°C.
- Remove supernatant and briefly air-dry pellets at RT.
- Resuspend each pellet in 100 μL of 1% (w/v) SDS.

MW-based separation of WCL proteins by GELFrEE

- Add 8 μL of **1M DTT** to the resuspended proteins, followed by 12 μL of **Optima-grade H₂O**.
- Add 30 μL of **5X Tris-Acetate GELFrEE sample buffer**, for a final volume of 150 μL. Completely resuspend pellet.
- Boil resuspended proteins for 10 min. at 95 °C.
- Pellet any remaining debris by centrifugation at 13.2 krpm for **10 min.** at **RT**.

MW-based separation of WCL proteins by GELFrEE, continued

- Load each sample into a single lane of a new **10% GELFrEE cartridge**.
- Collect twelve fractions of human WCL proteins resolved by MW according to the manufacturer's protocol.
- To visualize quality of protein separation across the collected fractions, collect 10 μL aliquots from each fraction and combine with an equivalent volume of 2x gel sample buffer containing 10 mM β-mercaptoethanol. Boil each gel sample for 10 min. at 95 °C. Collect samples by centrifugation at 13.2 krpm for 1 min. at RT. Load all samples onto a 15-well BioRad AnyKD gel, along with two or three lanes of MW marker, and resolve proteins to completion via SDS-PAGE. Visualize the constituent proteins within each of the collected fractions by silver nitrate staining. An example of a typical result is shown below:

400 μ g of human whole-cell lysate was resolved on a 10% GELFrEE cartridge by the method described above. Shown is the silver-stained SDS-PAGE gel containing fully-resolved 10 μ L aliquots from fractions 1-12. Note low degree of overlap from protein bands between fractions; this is an indication of optimal resolution between different MW ranges.

Methanol/Chloroform/Water Cleanup of GELFrEE Fractions

- + To each 150 μL GELFrEE fraction, add 600 μL (4 volumes) of Optima-grade methanol. Pipet vigorously to mix.
- Add 150 µL (1 volume) of **HPLC-grade chloroform**. Pipet vigorously to mix.
- Add 450 μL (3 volumes) of Optima-grade water. Pipet vigorously to mix. The resulting white color is due to the immiscibility of water in chloroform.
- Centrifuge at 13.2 krpm for **10 min.** at **RT**.
- There should be distinct layers visible within each fraction: an organic (bottom) layer, an aqueous (top) layer, and an interface. The precipitated proteins should be in a single pellet floating on the interface.
- Pipet off the top layer, leaving 10-20 μL to cover the pellet. Try to not disturb the pellet or organic layer.
- Add 450 μL (3 volumes) of Optima-grade methanol to the organic layer. Mix by gentle pipetting, taking care to not break up the protein pellet.
- Wash pellet by centrifugation at 13.2 krpm for 10 min. at RT.
- Remove supernatant and air-dry pellet for **2 min.** at **RT**.
- Resuspend pellet in 40 μL of Buffer A (95% Optima-grade water, 5 % Optima-grade acetonitrile, 0.2% MS-grade formic acid). Pipet vigorously to ensure complete pellet homogenization.
- Centrifuge at 13.2 krpm for 10 min. at RT to remove any remaining debris.
- Transfer supernatant to a clean Eppendorf LoBind tube or autosampler vial. The proteins are now ready for further dilution into Buffer A and analysis by qualitative top-down mass spectrometry.